Connecting the Solar System and Extra-Solar Systems with SAFIR

John Stansberry, MIPS, U. Arizona

Asteroid

Spitzer Legacy – SAFIR Projects – Key Capabilities and Challenges

Science Goals

- Planetary
 - Origin and evolution
 - Chemical and isotopic composition
 - Similarities and differences w/ Solar, and other system members
 - Physical/chemical properties vs. class, location, ...
 - Keys to processes
- Extra-Solar
 - Dust as indicator/tracer of planetary systems (debris)
 - Dust composition, distribution, mass
 - Direct studies of exoplanets
- Is the Solar system unusual or even unique?

- Spectra of Uranus, Neptune, Pluto
- Mid-IR albedos & spectra, and thermal properties of Pluto, Triton, many satellites
- Spectra of many current & extinct comets/comae, asteroids
- Albedos, diameters of ~10³ asteroids, ~50 Centaurs,
 ~200 KBOs
- Zodiacal dust structures, composition (via comae), size
- New...
 - Species, dust components, classes

Albedos and Diameters of Primitive Bodies

Cruikshank et al., 2004

Cometary activity, dust composition. Serendipitous asteroids.

29P/S-W 1, Stansberry et al., 2004

ie 2004, Pasadena Arizona, MIPS

Composition, Structure of Planet and Satellite Atmospheres

- Many GTO, Legacy, GO disk programs
 - Age, associations, spectral type, metallicity, binarity, planets
 - $-\sim 10^3$ systems, plus many young clusters
 - Resolved images of brightest debris disks
 - Gaps/clearings from SEDs
- Brown dwarf companions (IRAC)
 - $-\sim 20$ AU and beyond
- Dust composition
 - Dependence on system parameters
 - Comparison w/ SS dust (comets)

Evolution of disk mass with system age

- Non-Equilibrium
 - -Unusual structures in disks
 - -Time variable?
 - Magnitude
 - Brightness
- Systems w/o disks
 - -Initial angular momentum
 - -Metal-poor?

SAFIR: Kuiper-Belt Studies

- 1e5 KBOs > 50 km radius
- Dynamical classes
 - -Classical, scattered, resonant, Sedna, ?
 - Clues to orbital evolution of planets
- Extreme color diversity
- Source for P-Comets, Centaurs
- Analog for dust parent bodies in exo-disks
- Real compositional studies require knowledge of albedo

SAFIR: Exo-Systems Studies

Jovian Planets around nearby stars

- Roughly 500 stars w/in 10pc
- SAFIR could directly detect giant planets in these systems
- Planets around low-mass stars

SAFIR: Promise

- Sensitivity (~100x Spitzer)
 - Smaller, more distant, more numerous targets
 - Higher spectral resolution
- Spatial resolution
 - Satellites, planetary imaging, comet nuclei
 - Extra-solar dust structures and planets
- Spectral coverage
 - HD, xO, H₂O ice and gas, silcates

SAFIR: ... and Challenge

- Sensitivity
 - Saturation
 - Asteroids
- Spatial resolution
 - Coverage: large arrays, scanning/mapping
- Spectral coverage
 - Rich, well studied 1-20um region not covered
 - Can this gap really be filled by other means?
 - Yet more lab data needed...

End

SAFIR: Exo-Systems Studies

- Brown Dwarfs could also be detected
- Probably not a unique discovery space (near- to mid-IR imaging better?)

